单原子纳米酶

仪器信息网单原子纳米酶专题为您整合单原子纳米酶相关的最新文章,在单原子纳米酶专题,您不仅可以免费浏览单原子纳米酶的资讯, 同时您还可以浏览单原子纳米酶的相关资料、解决方案,参与社区单原子纳米酶话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

单原子纳米酶相关的资讯

  • 董绍俊院士在单原子纳米酶研究取得新进展 电镜X衍射仪等科学仪器齐上阵
    p style=" text-indent:28px" span style=" font-family:宋体" 近日,电分析化学国家重点实验室董绍俊科研团队在单原子纳米酶研究领域获得重要进展,相关研究成果以“ /span span Single-atom nanozymes /span span style=" font-family:宋体" ”为题发表在近期《科学》子刊《科学· 进展》( /span span Science Advances /span span style=" font-family:宋体" )上。 /span /p p style=" text-indent:28px" span style=" font-family:宋体" 纳米酶是一种具有酶特性的纳米 span style=" font-family: 宋体 text-indent: 28px " 催化 /span 材料,近年来,由于其成本低、稳定性高、催化活性可调、易于大规模生产和储存等独特的优点,在生物传感、组织工程、治疗和环境保护等领域得到广泛的应用。然而,纳米酶的低活性位点密度以及复杂的结构 /span span - /span span style=" font-family:宋体" 晶面催化机理是传统纳米酶技术发展所面临的重大难题。 /span /p p style=" text-indent:28px" span style=" font-family:宋体" 为了解决这些问题,董绍俊研究团队发现了一类新的单原子纳米酶 /span span -- span FeN sub 5 /sub SA/CNF /span /span span style=" font-family:宋体" ,该纳米酶将最先进的单原子技术与固有的酶样活性位点结合起来,其原子分散的金属中心最大限度地提高了原子的利用效率和活性位点的密度。研究团队借助 /span span SEM /span span style=" font-family:宋体" 、 /span span TEM /span span style=" font-family:宋体" 、 /span span STEM /span span style=" font-family:宋体" 等对单原子纳米酶进行了形貌表征,通过 /span span XRD /span span style=" font-family:宋体" 、 /span span XPS /span span style=" font-family:宋体" 、 /span span XAFS /span span style=" font-family:宋体" 等进行了原子结构分析并运用比色法测定了 /span span FeN sub 5 /sub SA/CNF /span span style=" font-family:宋体" 的氧化活性。 /span /p p style=" text-indent:28px" span style=" font-family:宋体" 研究团队通过模拟酶活性中心的空间结构,采用自底向上的方法合成了具有轴向五氮配位铁活性中心的单原子纳米酶。以氧化酶催化为模型,通过理论计算和实验研究, /span span span Fe sub 5 /sub SA/CNF /span /span span style=" font-family:宋体" 类氧化活性最高的原因是其关键的协同作用和电子供体机制。 /span Fe sub 5 /sub SA/CNF span style=" font-family:宋体" 的 /span TEM span style=" font-family:宋体" 、 /span STEM span style=" font-family:宋体" 表征显示其是拥有多空性质的金属单原子纳米酶,其在碳纳米片上只存在单个的铁原子,单原子纳米酶的平均孔径在 /span 0.8-3.4nm span style=" font-family:宋体" 之间,比表面积达到了 /span 1407 m sup 2 /sup g sup ?1 /sup span style=" font-family:宋体" 。电子能量损失谱图像表明, /span Fe span style=" font-family:宋体" 和 /span N span style=" font-family:宋体" 原子均匀分布在整个领域,形成 /span Fe-N span style=" font-family:宋体" 三维矩阵网络结构。通过电感耦合等离子体质谱 /span (ICP-MS) span style=" font-family:宋体" 及元素分析测定其中铁元素占比为 /span 1.2% (wt %) span style=" font-family:宋体" 、 /span 氮 span style=" font-family:宋体" 元素占比为 /span 4.8% span style=" font-family:宋体" ( /span wt % span style=" font-family:宋体" )。 /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 432px height: 404px " src=" https://img1.17img.cn/17img/images/201905/uepic/c30a18b9-7953-4916-ae47-0915cc53c2d9.jpg" title=" 董.jpg" alt=" 董.jpg" width=" 432" height=" 404" / /p p style=" text-align: center " strong span span style=" font-family:宋体" 图 /span span 1 /span /span span .Fe sub 5 /sub SA/CNF /span span style=" font-family:宋体" 的合成路线及形貌表征 /span /strong /p p style=" text-indent:28px" span style=" font-family:宋体" 研究结果表明, /span span FeN sub 5 /sub SA/CNF /span span style=" font-family:宋体" 的活性位点与天然氧化还原酶的轴向配位血红素相似。与传统纳米酶相比, /span span span Fe sub 5 /sub SA/CNF /span /span span style=" font-family:宋体" 最大限度地提高原子利用效率,显著提高了催化性能,其催化速率常数是 /span span FeN sub 4 /sub /span span style=" font-family:宋体" 催化剂的 /span span 17 /span span style=" font-family:宋体" 倍、铂的 /span span 70 /span span style=" font-family:宋体" 倍以上。与此同时, /span span Fe sub 5 /sub SA/CNF /span span style=" font-family:宋体" 在体外不仅具有广谱杀菌的作用,在体内也拥有良好的伤口消毒效果。该研究成果为纳米酶的催化机理和合理设计提供了一个新的视角,具有成为下一代纳米酶的巨大潜力。 /span /p p br/ /p
  • Park纳米科学原子力显微镜系列讲座培训(1) I 原子力显微镜在纳米研究中的应用:AFM的成像原理
    Park纳米科学原子力显微镜系列讲座培训一原子力显微镜在纳米研究中的应用:AFM的成像原理2021年5月25日(周二)北京时间下午3:30-4:30原子力显微镜(AFM)作为扫描探针显微镜家族的一员,具有纳米级的分辨能力,其操作容易简便,是目前研究纳米科技和材料分析的最重要的工具之一。此外原子力显微镜还具有摩擦性能,纳米机械性能和电学性能等高级性能。 在本研究中,我们将讨论接触模式、非接触模式和轻敲模式等原子力显微镜使用中的不同操作模式;内容将概括到从原子力显微镜测量中常用的原子相互作用的基本理论,到原子力显微镜的主要硬件组成。本讲座还将讨论各模式的关键点(如设定值、反馈)。 在接触模式下,系统会给探针恒定的力作为设定的基准点也就是设定点来物理接触样品。扫描期间为了维持这个设定点而进行反馈。在三种模式中,原理相对简单。然而,由于接触模式很容易对针尖和样品造成损伤。相比之下,非接触模式允许在不接触表面的情况下进行形貌测量。因此,可以很好地保护针尖和样品。轻敲模式与非接触模式原理相似,在扫描过程中,探针轻触样品表面,以获得测量材料属性分布的额外信息(例如模量分布)。 本次讲座主要针对AFM原理的基础知识,帮助大家了解探针和样品之间的相互作用。由三种模式测出的图像对比也将在讲座中呈现。报告人 : Park原子力显微镜应用科学家Chris Jung Chris Jung, is an Application Scientist for Park Systems Korea - Research Application Technology Center (RATC) department. He received his Master’s degree in Physics from the Kyung Hee University, and his Bachelor’s degree in Physics from Dankook University in South Korea. His major project includes Evaluation of Kelvin Probe Force Microscopy (KPFM) at the perspective of resolution.Park原子力显微镜系列讲座列表(5月-9月) 想了解更多详情,请关注微信公众号:Park原子力显微镜 400电话:400-878-6829 Park官网:parksystems.cn
  • 纳米温度计可揭秘原子尺度热散逸
    据物理学家组织网近日报道,一个由美国密歇根大学等单位研究人员组成的国际小组开发出一种纳米级的&ldquo 温度计&rdquo ,能从原子尺度测量热散逸,并首次建立了一种框架,来解释纳米级系统的热散逸现象。这一成果为开发体积更小、功能更强的电子设备扫除了一项重要技术障碍。相关论文发表在《自然》杂志上。 电流通过导电材料时会产生热,理解电子系统中热是从哪里产生的,有助于工程师设计性能可靠而高效的计算机、手机和医疗设备等。在较大线路中,人们很容易理解热是怎样产生的,但对纳米尺度的终端,经典物理学却无法描述热和电之间的关系。这些设备可能只有几个纳米大小,或由几个原子构成。 原子与单分子接点代表了电路微型化的最终极限,也是测试量子传输理论的理想平台。要描述新功能纳米设备的电荷与能量传输,离不开量子传输理论。在今后的20年,计算机科学与工程人员预期可能会在&ldquo 原子&rdquo 尺度开展工作。但由于实验条件限制,人们对原子设备的热散逸与传播还了解甚少,也为开发新型纳米设备带来了很大障碍。 该研究领导者、密歇根大学机械工程和材料科学与工程副教授普拉姆德· 雷迪说:&ldquo 目前晶体管已经达到极小量度,在20或30纳米级别。如果该行业继续按照摩尔定律的速度发展下去,线路中晶体管体积缩小的速度是其密度的两倍,如此离原子级别已经不远。然后,最重要的事情就是要理解热量散播和设备电子结构之间的关系,如果缺乏这方面的知识,就无法真正掌控原子级设备,我们的研究首次揭示了这一领域。&rdquo 雷迪实验室博士生李宇哲(音译)等人开发出一种技术,特制了一个稳定的原子设备和一种纳米大小的温度计,将二者结合做成一种圆锥形工具。在分子样本线路中,圆锥形工具和一片黄金薄片之间能捕获一个分子或原子,以研究其热散逸。他们通过实验显示了一个原子级系统的变热过程,以及这一过程与宏观尺度变热过程的不同,并且设计了一个框架来解释这一过程。 雷迪解释说,在可接触的宏观世界里,当电流通过导线时,整个导线都会发热,与其相连的所有电极也是如此。相比之下,当&ldquo 导线&rdquo 是纳米大小的分子,而且只和两个电极接合时,温度升高主要发生在二者之一中。&ldquo 在原子级设备中,所有热量集中在一个地方,很少会到其他地方。&rdquo 雷迪说:&ldquo 我们的研究还进一步证实了物理学家列夫· 朗道提出的热散逸理论的有效性,并深入理解了热散逸和原子尺度的热电现象之间的关系,这是从热到电之间的转变。&rdquo

单原子纳米酶相关的方案

  • 天津兰力科:吲哚美辛在单壁碳纳米管修饰电极上的电化学行为
    运用伏安法研究了吲哚美辛在单壁碳纳米管修饰电极上的电化学行为。在0.1mol/L HAc2NaAc 缓冲溶液(pH 4. 5) 中, 吲哚美辛于0.91 V (vs . SCE)电位处有一个峰形很好的氧化峰。与裸玻碳电极相比, 吲哚美辛在修饰电极上的电位正移了约30mV , 峰电流增加了近10 倍, 表明该修饰电极对吲哚美辛有较强的电催化作用。搅拌条件下开路富集2 min , 氧化峰电流与吲哚美辛在0.00000055~0.000011mol/L 浓度范围内呈良好的线性关系, 检出限为0.00000011mol/L 。该方法可用于药剂中吲哚美辛的分析。
  • 原子层沉积 ALD 在纳米材料方面的应用
    在微纳集成器件进一步微型化和集成化的发展趋势下,现有器件特征尺寸已缩小至深亚微米和纳米量级,以突破常规尺寸的极限实现超微型化和高功能密度化,成为近些年来的热点研究领域。微纳结构器件不仅对功能薄膜本身的厚度和质量要求严格,而且对功能薄膜/基底之间的界面质量也十分敏感,尤其是随着复杂高深宽比和多孔纳米结构在微纳器件中的应用,传统的薄膜制备工艺越来越难以满足其发展需求。ALD 技术沉积参数高度可控,可在各种尺寸的复杂三维微纳结构基底上,实现原子级精度的薄膜形成和生长,可制备出高均匀性、高精度、高保形的纳米级薄膜。
  • 利用 SP-ICP-MS对单壁碳纳米管进行分析
    SP-ICP-MS 提供了一种单壁碳纳米管金属含量的定量方法。使用金属杂质的含量可以推测单壁碳纳米管的计数浓度,有效拓展了ICP-MS在纳米材料领域的应用。另外,一旦金属含量已知,即可测定未知样品中的单壁碳纳米管浓度。这项研究的意义是可以在无需消解碳纳米管(一个冗长繁琐的过程)的情况下准确量化碳纳米管中的金属杂质。

单原子纳米酶相关的论坛

  • 美首次获得纳米粒子内单原子三维图像

    科技日报 2012年03月24日 星期六 本报讯 据美国物理学家组织网3月21日报道,美国科学家在3月22日出版的《自然》杂志上表示,他们发明了一种直接测量纳米材料原子结构的新方法,让他们首次得以看见纳米粒子内部的情况,并获得其单个原子及原子排列的三维图像。最新研究有望大大改进医学和生物学等领域广泛使用的X射线断层照相术获得图像的清晰度和质量。 加州大学洛杉矶分校物理学和天文学教授兼加州纳米系统研究所研究员苗建伟(音译)领导的团队使用一个扫描透射电子显微镜,在一个直径仅为10纳米的微小金粒子上方扫射了一束狭窄的高能电子。这个金纳米粒子由成千上万个金原子组成,每个金原子的大小仅为人头发丝宽度的百万分之一,它们与通过其上的电子相互作用,产生的阴影包含有金纳米粒子内部结构的信息,这些阴影被投射到扫描镜下方的一个探测器上。 研究小组从69个不同的角度进行测量,将每个阴影产生的数据聚集在一起,形成了一个纳米粒子内部的三维结构图。使用这种名为电子断层摄影术的方法,他们能直接看到单个原子的情况以及单个原子在特定的金纳米粒子内的位置。 目前,X射线晶体照相术是让分子结构内的原子三维可视化的主要方法。然而,这一方法需要测量很多几乎完全一样的样本,然后再将得到的结果平均。苗建伟说:“一般平均需要扫描数万亿个分子,这会导致很多信息丢失。而且,自然界中的大部分物质都是结构不如晶体结构那么有序的非晶体。”他表示:“现有技术主要针对晶体结构,目前还没有直接观察非晶体结构内部原子的三维情况的技术。探索非晶体材料的内部情况非常重要,因为结构上一点小小的变化都会大大改变材料的电学属性。例如,半导体内部隐藏的瑕疵会影响其性能,而新方法会让这些瑕疵无所遁形。” 苗建伟和他的同事已经证明,他们能为一个并非完美的晶体结构(比如金纳米粒子)摄像,晶体可小至0.24纳米,一个金原子的平均大小为0.28纳米。实验中的金纳米粒子由几个不同的晶粒组成,每个晶粒形成一块拼图,其中的原子采用些许不同的模式排列。纳米结构具有隐藏的晶体断片和边界,同由单一晶体结构组成的物质不同,新方法首次在三维层面实现了纳米粒子的内部可视化。 (刘霞)

  • 纳米医学畅想

    纳米医学畅想 纳米医学的研究内容十分广泛,最引人注目的是扫描隧道显微镜(STM)。这一非凡的仪器于80年代初研制成功,可以在纳米尺度上获取生命信息,研究者相继得到了左旋DNA、双螺旋DNA的碱基对、平行双螺旋DNA的STM图像。我国科学家利用STM成功的拍摄到表现DNA复制过程中一瞬间的照片。目前,研究已涉及到氨基酸、人工合成多肽、结构蛋白和功能蛋白等领域。 纳米使单位体积物质储存和处理信息的能力提高百万倍以上,人类有可能将存储了全部知识的纳米计算机安放在人脑中,或许有一天,图书馆就在我们的头脑内,每一个人都可能成为爱因斯坦、牛顿,老年性痴呆、记忆丧失等病症将会得到彻底治愈。纳米计算机可能用来读出人脑内的内容及品性,将一个脑内的信息转录到另一个脑内,这个脑可以是人脑,也可以是电脑。纳米医学也有可能改变人类自身,让人类成为能在天上飞、水中游,能进行光合作用或能在恶劣环境下生存的“超人”。将来,掌握纳米医学技术的医生,不仅能够“修理人”——治病,而且能够“改造人”——使其具有特殊功能。虽然这些设想有些离奇,但决非是毫无科学根据的幻想。即将进入临床应用的有:利用纳米传感器获取各种生化信息和电化学信息。已经取得重大成果的还有DNA纳米技术,主要应用于分子的组装。 已经在医药领域得到成功的应用。人们已经能够直接利用原子、分子制备出包含几十个到几百万个原子的单个粒径为1-100纳米的微粒。最引人注目的是作为药物载体,或制作人体生物医学材料,如人工肾脏、人工关节等。在纳米铁微粒表面覆一层聚合物后,可以固定蛋白质或酶,以控制生物反应。由于纳米微粒比血红细胞还小许多,可以在血液中自由运行,因而可以在疾病的诊断和治疗中发挥独特作用。 当把二氧化肽做到粒径为几十纳米时,在它的表面会产生一种叫自由基的离子,能破坏细菌细胞中的蛋白质,从而把细菌杀死。例如用二氧化肽处理过的毛巾,只要有可见光照射,上面的细菌就会被纳米二氧化肽释放出的自由基离子杀死,具有抗菌除臭功能。 将药物粉末或溶液包埋在直径为纳米级的微粒中,将会大大提高疗效、减少副作用。纳米粒可跨越血脑屏障,实现脑位靶向。另外,纳米粒脉管给药,可降低肝内蓄积,从而有利于导向治疗。纳米粒中加入磁性物质,通过外加磁场对其导向定位,对于浅表部位病灶治疗具有一定的可行性。在影像学诊断中,纳米氧化铁在病灶与正常组织的磁共振图像上,会有较大的对比度。 纳米粒用作药物载体具有下述显著优点:(1)可到达网状内皮系统分布集中的肝、脾、肺、骨髓、淋巴等靶部位;(2)具有不同的释药速度。(3)提高口服吸收药物的生物利用度。(4)提高药物在胃肠道中的稳定性。(5)有利于透皮吸收及细胞内药效发挥。如:载有抗肿瘤药物阿霉素的纳米粒,可使药效比阿霉素水针剂增加10倍。目前已在临床应用的有免疫纳米粒、磁性纳米粒、磷脂纳米粒以及光敏纳米粒等。 医用纳米机械或纳米微型机器人可潜入人体的血管和器官,进行检查和治疗,使原来需要进行大型切开的手术成为微型切开或非手术方式,并使手术局部化。纳米医用机器甚至可以进入毛细血管以及器官的细胞内,进行治疗和处理。这类机器可以将对人体的伤害减小到最低程度。含有纳米计算机的、可人机对话的、有自身复杂能力的纳米机器人一旦制成,能在一秒钟内完成数十亿个操作动作。如果数量足够多,就可以在几秒或几分钟内完成现今需几天或几个月甚至几年、几十年才能完成的工作。 和细胞一样,作业中坏了的微型机械可以随时被更换或修理。微型机械发展的顶峰,或许是可以自己增殖繁衍的纳米机器人。别以为以上设想不可思议。纳米科学家们相信这种愿望能够实现。 不难想象,倘若人类能直接利用原子、分子进行生产活动,这将是一个“质”的飞跃,将改变人类的生产方式和空前地提高生产能力,并有可能从根本上解决人类面临的诸多困难和危机,开创医学新纪元。

单原子纳米酶相关的资料

单原子纳米酶相关的仪器

  • 2015年Anasys发布了最新一代产品nanoIR2-s,在广受欢迎的第二代纳米红外光谱系统的基础上增加了散射近场光学成像和光谱功能(s-SNOM)。实现了同一平台兼具AFM-IR和s-SNOM两种技术。仪器的空间分辨率达到10nm,广泛用于各种聚合物、有机无机复合材料、生物样本、半导体、等离子体、纳米天线等。纳米红外&散射近场光学成像和光谱系统(nanoIR2-s)AFM-IR &s-SNOM l AFM-IR 消除分析化学研究人员的担忧--与FTIR光谱完全吻合,没有吸收峰的任何偏移l s-SNOM使用金属镀层AFM探针代替传统光纤探针来增强和散射样品纳米区域内的光辐射,空间分辨率由AFM针尖的曲率半径决定l 专利技术实现智能的光路优化调整,无需担心光路偏差拖延你的实验进度l 最准确的定性微区化学表征,得到美国国家标准局NIST, 橡树岭国家实验室等美国权威机构的认可l 简单易用的操作,被三十多位企业用户和近百位学术界所选择l 基于DI传承的多功能AFM实现纳米热学,力学,电学和磁学测量:l 纳米热分析模块(nanoTA, SThM)l 洛仑兹接触共振模块(LCR)l 导电原子力显微镜镜(CAFM)l 开尔文电势显微镜(KPFM)l 磁力显微镜(MFM)l 静电力显微镜(EFM)10纳米空间分辨率化学成像和光谱石墨烯等离子体 高分辨率成像 石墨烯表面等离子体的近场相位和振幅成像;优于10nm的光学成像PTFE的nano FTIR光谱显示相干分子振动时域图(上图),和相应的近场光谱(下左图)。pNTP分子层的近场光谱(图下右)。
    留言咨询
  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询
  • 纳米摩擦计 (NTR3)是用于表征众多表面在低接触时的摩擦特性的独特仪器。该系统使用弹性的双悬臂梁和高精度电容传感器,可以精确且极线性地测量出法向和切向力。纳米摩擦计结合了原子力显微镜 (AFM) 的精度与销盘滑动磨损试验装置的稳定性、坚固性和使用简易性。NTR3 进一步扩展了销盘滑动磨损试验装置的应用范围,能够在几 μN 力和几百微米的位移范围内测量。总之,NTR 创造了纳米和微米摩擦测量的新范围。主要特点技术特点独特的双悬臂梁结构,法向力可高达 1000 mN(精度为 3 nN)两个用于感测法向力和摩擦力的独立高精度电容传感器,旋转和/或线性的往复运动高精度电容传感器与压电式驱动器的结合本底噪音低,可用于微米摩擦测量带有角传感器的旋转模块带有位移传感器的先进线性模块悬臂梁可选范围大其他功能附着力测量光学视频显微镜或 AFMX 和 Y 向载物台温度和相对湿度传感器连续的磨损深度测量专用的样品支架技术指标法向力和摩擦力 - 双悬臂梁标准 (ST)高载荷 (HL)高精度 (HR)最大载荷 [mN]100100010最小载荷 [μN]505005载荷精度 [μN]0.0330.003本底噪音 [μN]*1100.1* 本底噪音值取决于环境条件法向力测量:独立的高精度电容传感器摩擦力测量:独立的高精度电容传感器旋转模块转速:1 rpm 到 200 rpm(盘滑动磨损试验装置)磨痕半径:30 μm 到 20 mm(盘滑动磨损试验装置)磨痕半径精度:3 μm(盘滑动磨损试验装置)往复角:±10° 到 ±150 °可从旋转模块逆向转变成线性往复模块线性往复模块划频: 0.01 Hz - 10 Hz(线性摩擦计)行程长度:最大 2 mm(线性摩擦计)行程长度精度:250 nm(线性摩擦计)可从线性往复模块逆向转变成旋转模块
    留言咨询

单原子纳米酶相关的耗材

  • AFM原子力显微镜纳米标尺
    产品特点:GATTA-AFM纳米标尺具有准确、高度平行的结构,可以完美地用于检测或优化原子力显微镜。在实际环境中测试原子力显微镜可以达到的分辨率非常重要,不仅可以测出原子力显微镜达到产品标称分辨率的可能性,还可以测出实际使用时可达到的极限。如今GATTA也提供适合测试的GATTA-AFM纳米标尺,现在,有了GATTA原子力显微镜纳米标尺之后,就有了足够的测试样品,这些样本用DNA做成,呈现70nm*90nm*2nm(高)的长方体形状。纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺技术参数:
  • 多功能纳米硬度计配件
    孚光精仪品牌的多功能纳米硬度计配件通过扫描材料表面实现对材料力学性能的纳米尺度的高精度测量,精确给出硬度,弹性模量,杨氏模量等材料力学性能。 多功能纳米硬度计配件特色具备原子力显微镜和纳米压痕仪的功能实现静态压痕和动态压痕测量以及测量最高位移测量能力可达300mkm, 最高负载科大100mN。采用模块化设计,可广泛集成原子力显微镜,光学显微镜,激光干涉仪器等尖端材料表面测量仪器,为用户提供综合性材料微观力学测试方案。 多功能纳米硬度计配件选型4D紧凑型纳米硬度计4D紧凑型是全球结构最为紧凑小巧的纳米硬度测试仪,它采用纳米压痕法测量材料硬度和弹性模量(杨氏模量),负载高达2N,广泛用于材料力学性能测量研究。也非常适合大学或研究单位的纳米压痕仪测量硬度的教学或演示教学。 4D标准型纳米硬度计4D标准型具有测量材料硬度,弹性模量和其它力学性能的功能。它采用静态和动态纳米压痕技术以及sclerometry方法测量材料性能。并且可以接触式或半接触式地测量材料表面形貌,采用光学显微镜高精度地对压头和样品进行精确互动性定位。纳米硬度计4D标准型还可以接入另外的传感器或测量模块,实现对材料表面进行其它测量。 4D+增强型纳米硬度计4D+增强型配置是全球功能最多的多功能纳米硬度测量仪器。它具有纳米压痕仪和原子力显微镜的功能,具备了所有的物理和力学性能测量能力。它具有原子力显微镜测量模块,能够以纳米级分辨率研究压痕后留下的表面痕迹和图像,并能够全自动测量,可以批量处理分析测量结果。
  • 多功能纳米压痕仪配件
    多功能纳米压痕仪配件通过扫描材料表面实现对材料力学性能的纳米尺度的高精度测量,精确给出硬度,弹性模量,杨氏模量等材料力学性能。 多功能纳米压痕仪配件特色最高位移测量能力可达300mkm, 最高负载科大100mN。实现静态压痕和动态压痕测量以及sclerometry测量具备原子力显微镜和纳米硬度测量仪的功能采用模块化设计,可广泛集成原子力显微镜,光学显微镜,激光干涉仪器等尖端材料表面测量仪器,为用户提供综合性材料微观力学测试方案。 多功能纳米压痕仪配件选型4D紧凑型多功能纳米压痕仪4D紧凑型是全球结构最为紧凑小巧的纳米硬度测试仪,它采用纳米压痕法测量材料硬度和弹性模量(杨氏模量),负载高达2N,广泛用于材料力学性能测量研究。也非常适合大学或研究单位的纳米压痕仪测量硬度的教学或演示教学。 4D标准型多功能纳米压痕仪4D标准型具有测量材料硬度,弹性模量和其它力学性能的功能。它采用静态和动态纳米压痕技术以及sclerometry方法测量材料性能。并且可以接触式或半接触式地测量材料表面形貌,采用光学显微镜高精度地对压头和样品进行精确互动性定位。多功能纳米压痕仪4D标准型还可以接入另外的传感器或测量模块,实现对材料表面进行其它测量。 4D+增强型多功能纳米压痕仪4D+增强型配置是全球功能最多的多功能纳米硬度测量仪器。它具有纳米压痕仪和原子力显微镜的功能,具备了所有的物理和力学性能测量能力。它具有原子力显微镜测量模块,能够以纳米级分辨率研究压痕后留下的表面痕迹和图像,并能够全自动测量,可以批量处理分析测量结果。

单原子纳米酶相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制