非线性光学响应

仪器信息网非线性光学响应专题为您整合非线性光学响应相关的最新文章,在非线性光学响应专题,您不仅可以免费浏览非线性光学响应的资讯, 同时您还可以浏览非线性光学响应的相关资料、解决方案,参与社区非线性光学响应话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

非线性光学响应相关的耗材

  • GaSe 硒化镓 NIR-IR近红外非线性光学晶体
    GaSe(硒化镓)晶体的太赫兹振荡能达到有非常宽的频域,至41THz。GaSe是负单轴层状半导体晶体,拥有六边形结构的62m空间点群,300K时禁带宽度为2.2eV。GaSe晶体抗损伤阈值高,非线性系数大(54pm/V),非常合适的透明范围,以及超低的吸收系数,这使其成为中红外宽带电磁波振荡的非常重要的解决方案。因宽带太赫兹振荡和探测使用的是低于20飞秒的激光光源,GaSe发射-探测系统能获得与ZnTe可比的甚至更好的结果。通过对GaSe晶体厚度的选取,我们可以实现对THz波的频率可选择性控制。注:GaSe晶体的解理面为(001),因此对该晶体使用的一个很大限制在于质软,易碎。 技术参数主要特性复合物GaSe透光率, μm0.62 – 20非线性系数, pm/Vd22 = 54 @10.6 μm 对称度六方晶系, 6m2 point group晶胞参数, ?a=3.74, c=15.89典型反射系数 10.6 μm 5.3 μmno=2.6975, ne=2.3745 no=2.7233, ne=2.3966光学损伤阈值, MW/cm21064 nm (t=10 ns)30离散角, °5.3 μm4.1应用10.6 μm激光辐射二次谐波的产生中红外区域高达17μm的光学参量振荡器、光学参量放大器、DFG等 对于所有晶体,我们能够为特定应用提供合适的防反射/保护涂层,以及反射率曲线。
  • AGS 硫镓银 非线性光学晶体 AgGaS2
    AGS 硫镓银晶体(silver thiogallate硫没食子酸银)是一种优质的红外非线性晶体材料,具有三波非线性作用(OPO)的优良性能。透光范围为0.53-13um, AgGaS2晶体在550um处具有高透光性,具有广泛的应用,可以用于Nd:YAG激光泵浦的OPO,半导体激光,钛宝石激光,Nd:YAG和IR染料激光的各种差频, 覆盖3-12um波段,此外,还实用于定向红外对抗系统(DIRCMS)和各种波长CO2激光倍频。AGS 硫镓银对中红外激光的倍频效率高,可用于光学参量放大和光学参量振荡以及差频产生,应用波长可达到中红外的17 μm。 技术参数应用中红外辐射的高效倍频光学参量振荡和放大,不同频率产生到高达12μm的中红外区域各向同性点附近区域的光学窄带滤波器 (0.4974 μm at 300 K) 主要参数复合物AgGaS2透明度, μm0.47 – 13非线性参数, pm/Vd36 = 12.6 @ 10.6 μm 负单轴晶体no ne (at λ 0.497 μm ne no)对称性 四方晶系, -42m point group晶胞参数, ?a=5.757, c=10.311典型反射指数10.6 μm 5.3 μmno=2.3475, ne=2.2918 no=2.3945, ne=2.3406光学损伤阈值, MW/cm2 1064 nm (t=10 ns)350离散角, °5.3 μm0.76热导系数 k, WM/M°C1.5室温带隙, eVEg = 2.73在各向同性点的光活性 ρ = 522deg/mmn0= ne, λ = 0.4974 μm0.2透明度级别的远红外吸收边缘0.86 THz 346 μm光学元件参数定位精度, arc min 30平行度, arc sec 30平整度546 nmλ/4表面质量, scratch/dig30/20 可提供大/长光学元件,请发送您的要求。我们能够根据客户的规格提供合适的减反射/保护等涂层,可根据要求应用反射率曲线。
  • KTP 磷酸氧钛钾(KTiOPO4)非线性光学晶体
    磷酸氧钛钾(KTiOPO4或KTP)是一种优良的非线性晶体。它具有高的光学质量、宽的透明范围、相对较高的有效倍频系数(约为KDP的3倍)、极高的光学损伤阈值、宽的接受角、小的走离(small walk-off)以及宽波长范围内的I型和II型非临界相位匹配(NCPM)。KTP是Nd:YAG激光器和其他掺钕激光器倍频最常用的材料,特别是在低或中等功率密度下。KTP的特性使其作为电光调制器以及光波导器件(包括相位调制器、幅度调制器和定向耦合器)具有优越性。 技术参数主要特性复合物KTiOPO4透光率, μm0.35 – 4.5非线性系数, pm/Vd31 = 2.0 d32 = 3.6对称度斜方晶系, mm2 point group晶胞参数, ?a=12.818, b=6.404, c=10.596典型反射系数1064 nm 532 nmnx=1.7381, ny=1.7458, nz=1.8302 nx=1.7785, ny=1.7892, nz=1.8894 光学损坏阈值, GW/cm21064 nm (t=10 ns)~1电光系数, pm/Vr13=9.5, r23=15.7, r33=36.3莫氏(Mohs)硬度5 光学元件参数 定向精度, arc min 30平行度, arc sec 30平面度546 nmλ/6 表面质量, scratch/dig20/10应用近红外区高达4μm的光学参量振荡器(OPO)在高达4μm的近红外区域产生不同频率(DFG)1.064μm辐射产生的二次谐波(SHG) 对于所有晶体,我们能够为特定应用提供合适的防反射/保护涂层,以及反射率曲线。

非线性光学响应相关的仪器

  • DSR300系列微纳器件光谱响应度测试系统是一款专用于低微材料光电测试的系统。其功能全面,提供多种重要参数测试。系统集成高精度光谱扫描,光电流扫描以及光响应速率测试。40μm探测光斑,实现百微米级探测器的*对光谱祥响应度测量。超高稳定性光源支持长时间的连续测试,丰富的光源选择以及多层光学光路设计可扩展多路光源,例如超连续白光激光器,皮秒脉冲激光器,半导体激光器,卤素灯,氙灯等,满足不同探测器测试功能的要求。是微纳器件研究的优选。 功能:? 光谱响应度? 外量子效率? 单色光/变功率IV;? 不同辐照度IT曲线(分辨率200ms)? 不同偏压下的IT曲线? LBIC,Mapping? 线性度测试? 响应速率测试 微纳器件光谱响应度测试系统主要技术参数显微镜头标配:10倍超长工作距离物镜,工作距离大于17mmNA值:0.42光谱范围:350-800nm选配:1,50倍超长工作距离消色差物镜,工作距离大于17mmNA值:0.42光谱范围:480-1800nm 2,15倍紫外物镜,工作距离大于8.5mmNA值:0.32光谱范围:250-700nm 3,50倍超长工作距离紫外物镜,工作距离大于12mmNA值:0.42光谱范围:240-500nm 4,40倍反射式长工作距离工作距离大于7.8mmNA值:0.5光谱范围:200nm-20um光斑中心空心光源选配光源1、半导体激光器波长:405nm,532nm,633nm,808nm,980nm可选不稳定性:<1% 2、皮秒脉冲激光器波长:375nm,405nm,488nm,785nm,976nm可选脉宽:100ps频率:1-20M Hz 3、氙灯光源光谱范围:250nm-1800nm不稳定性:<1% 4、超连续白光激光光源光谱范围:400-2400nm频率:0.01MHz-200MHz脉宽:100ps光谱仪焦距:300mm;相对孔径:f/3.9;光学结构:C-T;光谱仪分辨率:0.1nm;倒线色散:2.7nm;波长准确度:±0.2nm波长重复性:±0.1nm扫描步距:0.005nm狭缝规格:圆孔抽拉式固定狭缝,孔径:0.2mm,0.5mm,1mm,1.5mm,2mm,2.5mm,3mm;三光栅塔台;光栅配置:1-120-300、1-060-500、1-030-1250,光栅尺寸:68×68mm6档自动滤光片轮,光谱范围200-2000nm;内置电动机械快门,软件控制快门开关;杂散光抑制比:10-5探针台配置4个探针座,配20/10微米针尖探针2米三同轴电缆,漏电流小于1pA。真空吸附样品台。探针座:XYZ方向12mm调节行程,0.75um调节分辨率,0-30°调节探针角度。LBIC MaappingXY方向行程50mm,分辨率5um。数釆v 锁相放大器斩波频率:20Hz~1KHz;频率6位显示,2.4英寸屏,320×240液晶显示;电压输入模式:单端输入或差分输入;电压、电流两种输入模式; 满量程灵敏度:1nV至1V;电流输入增益:106或108V/A;动态储备:>100dB;时间常数范围:10μs至3ks; v keithley2612B量程:100nA/1A最小信号:1nA本地噪音:100pa分辨率:100fa通道数:2 v keithley2636B量程:1nA/1A最小信号:10pA本地噪音:1pa分辨率:10fa通道数:2制冷样品台温度范围:-196℃-600℃,(-196℃需要选择专用冷却系统)全程温度精度/温度性:0.1℃/<0.01℃光孔直径:2.4mm样品区域面积:直径22mm两个样品探针,1个LEMO接头(可增加至1探针)工作距离:4.5-12.5mm气密样品腔室,可充入保护性气体独立温度控制响应速率测试示波器型号:MDO32模拟带宽100MHz采样率5GS/s记录长度10M时间范围:uS-S,需要配合调制激光器使用时间范围:10nS-S,需要配合皮秒脉冲激光器使用 三维可调高稳定探针台结构,方便样品位置调节。内置三路半导体激光器或者两路光纤激光器,外置一路激光光路。可以引入可调单色光源,进行全光谱范围的光谱响应度测试。测试功能曲线:40um光斑@550nm@50倍物镜200um光纤 70um光斑@550nm@50倍物镜400um光纤5um光斑@375nm皮秒激光器@40倍物镜 紫外增强氙灯和EQ99光源的单色光能量曲线,使用40倍反射式物镜,300mm焦距光谱仪,光谱仪使用1200刻线300nm闪耀光栅,光斑直径大小80um。
    留言咨询
  • 产品名称:非线性光学原位光谱检测气固反应池产品型号:非线性光学原位光谱检测气固反应池产品类型:精品定制产品特点:非线性光学原位光谱检测气固反应池
    留言咨询
  • 总览ASCUT UG & Co KG NIR-IR近红外非线性光学晶体包含 LISe 硒铟锂(LilnSe2),LIS硫铟锂(LilnS2),LGSe硒镓锂(LiGaSe2),LGS硫镓锂(LiGaS2),GASE硒化镓,AGSe硒镓银(AgGaSe2),AGS硫镓银(AgGaS2)等.我们能够根据客户的规格提供合适的减反射/保护等涂层,可根据要求应用反射率曲线。名称型号货号 描述 价格 LGS 硫镓锂 (LiGaS2) NIR-IR非线性光学晶体 LiGaS2A80160204透光率, 0.33 – 11.6µ m,带隙,4.15 eV,定位精度, arc min 30 平行度, arc sec 30 平面度 546 nm λ/4 表面质量, scratch/dig 30/20 LGSe硒镓锂(LiGaSe2) NIR-IR近红外非线性光学晶体 LiGaSe2A80160203透光率, 0.37 – 13.2µ m,带隙, 3.57eV (300K)定位精度, arc min 30 平行度, arc sec 30 平面度 546 nm λ/4 表面质量, scratch/dig 30/20 LIS 硫铟锂 (LiInS2) NIR-IR近红外非线性光学晶体 LiInS2A80160202透光率,0.35– 13.2 µ m, 非线性系数, pm/V d31=7.25, d24=5.66 @2.3 ,对称度 斜方晶系, mm2 point group ,晶胞参数, &angst a=6.893, b=8.0578, c=6.4816 ,定向精度, arc min 30 平行度, arc sec 30 平面度 546 nm λ/6 表面质量, scratch/dig 30/20 LISe 硒铟锂 (LilnSe2) NIR-IR近红外非线性晶体 LilnSe2A80160201透光率, 0.43– 13.2 µ m,非线性系数, pm/V:d31=11.78, d24=8.17 @2.3 µ m ,对称度:斜方(晶系), mm2 point group ,晶胞参数, &angst a=7.192, b=8.412, c=6.793 ,带隙, eV:2.86,定向精度, arc min 30 平行度, arc sec 30 546 nm λ/4 表面质量, scratch/dig 30/20 AGSe 硒镓银(AgGaSe2)NIR-IR近红外非线性晶体 AgGaSe2A80160206透光率,0.76 – 18 µ m,单轴负晶 no ne (at λ 0.804 μm ne no),非线性系数, pm/V d36 = 39.5 @10,6 µ m ,对称度 四方晶系, -42m point group GaSe 硒化镓 NIR-IR近红外非线性光学晶体 GaSeG80010032透光率0.62 – 20µ m,非线性系数, pm/V : d22 = 54 @10.6 µ m,对称度:六方晶系, 6m2 point group,晶胞参数, &angst a=3.74, c=15.89,离散角, ° 5.3 µ m AGS 硫镓银 非线性光学晶体 AgGaS2 AgGaS2A80160205透光率: µ m 0.47 – 13 非线性系数: pm/V d36 = 12.6 @ 10.6 µ m , 对称度:四方晶系, -42m point group 晶胞参数:a=5.757, c=10.311总览LGS 是一种最近提出的 IR 新型非线性材料,具有纤锌矿型结构,UV 透射率低至 0.32。OPO、OPA、DFG 获得 mid-IR。LiBC 2族晶体具有一组重要的物理参数,如带隙大、二光子吸收低、透光范围宽,包括太赫兹窗口、低群速度失配、高导热率、低热膨胀系数各向异性、等,这导致在宽光谱范围内的可调谐激光系统中有效使用。LGS 硫镓锂 (LiGaS2) NIR-IR非线性光学晶体,LGS 硫镓锂 (LiGaS2) NIR-IR非线性光学晶体技术参数主要特性复合物LiGaS2透光率, µ m0.33 – 11.6对称度mm2带隙, eV4.15非线性极化率, pm/V (at 2.3 µ m)d31=5.8 d24=5.1 d33= -10.70.2透明度级别的远红外吸收边缘µ m92THz3.25光学损坏阈值, MW/cm21064 nm (t=14 ns)240热导系数 k, WM/M°C6-8 calc.光学倍频截止1.47 - 7.53光学元件参数复合物LiGaS2定位精度, arc min 30平行度, arc sec 30平面度546 nmλ/4表面质量, scratch/dig30/20总览LGSe是一种新型非线性红外材料,具有纤锌矿型结构,紫外透射率可降至0.38。LiBC2基团中红外晶体的OPO、OPA、DFG具有一组重要的物理参数,如带隙大、双光子吸收低、透明范围宽(包括THz窗镜)、群速度失配低、导热系数高、热膨胀系数各向异性低等,从而可以有效应用于宽光谱范围的可调谐激光系统。LGSe硒镓锂(LiGaSe2) NIR-IR近红外非线性光学晶体,LGSe硒镓锂(LiGaSe2) NIR-IR近红外非线性光学晶体技术参数主要特性复合物LiGaSe2透光率, µ m0.37 – 13.2对称度mm2带隙, eV (300K)3.57非线性极化率, pm/V (at 2.3 µ m)d31=9.9 d24=7.7 @2,3 µ m0.2透明度级别的远红外吸收边缘µ m218THz1.37热导率k, WM/M°C4.8-5.8 calc.光学倍频截止1.57 - 11.72光学元件参数定位精度, arc min 30平行度, arc sec 30平面度546 nmλ/4表面质量, scratch/dig30/20 总览硫铟锂(LiInS2或LIS)晶体的非线性特性与AgGaS2和AgGaS2相近,但其晶体结构不同。LiInS2是一种热释电材料,其电光参数是将其用作有效电光材料的基础。LIS 硫铟锂 (LiInS2) NIR-IR近红外非线性光学晶体,LIS 硫铟锂 (LiInS2) NIR-IR近红外非线性光学晶体技术参数主要特性复合物LiInS2透光率, µ m0.35– 13.2非线性系数, pm/Vd31=7.25, d24=5.66 @2.3 对称度斜方晶系, mm2 point group晶胞参数, &angst a=6.893, b=8.0578, c=6.4816典型反射系数1064 nm532 nmnx=2.1305, ny=2.1668, nz=2.1745nx=2.2353, ny=2.2841, nz=2.2919用于SHG的基频 x-y, Type II, eoe2.35–6.11x-z, Type I, ooe1.78–8.22y-z, Type II, oeo2.35–2.67y-z Type II, oeo5.59–6.11总间隔时间1.617–8.71光学损坏阈值, GW/cm21064 nm (t=14 ns)40 热导率k, WM/M°Ckx=6.1 ± 0.3 ky=5.9 ± 0.3 kz=7.4 ± 0.30.2透明度级别的远红外吸收边缘2.58 THz at 118 µ m 光学元件参数定向精度, arc min 30平行度, arc sec 30平面度546 nmλ/6表面质量, scratch/dig30/20 应用Ti: Sappire 激光泵浦的光学参量振荡器(范围 1 – 12 µ m)用于使用OPO的可调谐固态激光器,由Nd:YAG和其他1.2-10µ m范围内的激光器泵浦中红外(2-12µ m)的差频产生 ,将CO2激光辐射图像上转换为近红外或可见光区域&bull 中红外范围(2-12µ m)的不同频率发生器1-12μm泵浦Al2O3:Ti的光学参量振荡器席中红外区频率混频对于所有晶体,我们能够为特定应用提供合适的防反射/保护涂层,以及反射率曲线。 总览AgGaSe2晶体,中文名硒镓银晶体,简称AGSe晶体。中红外激光倍频有效的晶体材料,对中红外激光的倍频效率高,是有效的非线性激光晶体之一.还同时具有三波非线性作用(OPO)的优良性能。 'AGSe晶体透光范围为0.73-18μm,AgGaSe2晶体可用波段位于0.9-16μm。采用目前成熟的激光泵浦,AGSe晶体的OPO呈现宽阔的红外可调谐性能。用Ho:YLF2.05μm泵浦AgGaSe2晶体获得2.5-12μmOPO调谐光源 用1.4-1.55um调谐光源泵浦的非临界相位匹配OPO输出1.9-5.5um调谐光源 早在1982年,就已经实现了脉冲CO2激光的有效倍频 上述系统的输出波段还可以用和频或差频混频的方法(SF/DFM)予以扩充。AGSe晶体可用于光学参量放大和光学参量振荡以及差频产生,应用波长可达到中红外的17 µ m。AGSe 硒镓银(AgGaSe2)NIR-IR近红外非线性晶体,AGSe 硒镓银(AgGaSe2)NIR-IR近红外非线性晶体技术参数主要特性复合物AgGaSe2透光率, µ m0.76 – 18单轴负晶no ne (at λ 0.804 μm ne no)非线性系数, pm/Vd36 = 39.5 @10,6 µ m 对称度四方晶系, -42m point group典型反射系数10.6 µ m5.3 µ mno=2.5915, ne=2.5582 no=2.6138, ne=2.5811光学损坏阈值, MW/cm22000 nm (t=30 ns)13离散角, °5.3 µ m0.68热导系数 k, WM/M°C1.1频带隙能量, eV1.8光活度 ρ = 7deg/mm 在各向同性点, μmn0= ne, λ = 0.804 光学元件参数定位精度, arc min 30平行度, arc sec 40平面度546 nmλ/4表面质量, scratch/dig30/20应用有效中红外辐射二次谐波的产生 中红外区域高达17µ m的光学参量振荡器、光学参量放大器等各向同性点附近区域的光学窄带滤波器(300 K时为0.804 µ m) 对于所有晶体,我们能够为特定应用提供合适的防反射/保护涂层,以及反射率曲线。 总览GaSe(硒化镓)晶体的太赫兹振荡能达到有非常宽的频域,至41THz。GaSe是负单轴层状半导体晶体,拥有六边形结构的62m空间点群,300K时禁带宽度为2.2eV。GaSe晶体抗损伤阈值高,非线性系数大(54pm/V),非常合适的透明范围,以及超低的吸收系数,这使其成为中红外宽带电磁波振荡的非常重要的解决方案。因宽带太赫兹振荡和探测使用的是低于20飞秒的激光光源,GaSe发射-探测系统能获得与ZnTe可比的甚至更好的结果。通过对GaSe晶体厚度的选取,我们可以实现对THz波的频率可选择性控制。注:GaSe晶体的解理面为(001),因此对该晶体使用的一个很大限制在于质软,易碎。GaSe 硒化镓 NIR-IR近红外非线性光学晶体,GaSe 硒化镓 NIR-IR近红外非线性光学晶体技术参数主要特性复合物GaSe透光率, µ m0.62 – 20非线性系数, pm/Vd22 = 54 @10.6 µ m对称度六方晶系, 6m2 point group晶胞参数, &angst a=3.74, c=15.89典型反射系数10.6 µ m 5.3 µ mno=2.6975, ne=2.3745 no=2.7233, ne=2.3966光学损伤阈值, MW/cm21064 nm (t=10 ns)30离散角, °5.3 µ m4.1应用10.6 µ m激光辐射二次谐波的产生中红外区域高达17µ m的光学参量振荡器、光学参量放大器、DFG等 对于所有晶体,我们能够为特定应用提供合适的防反射/保护涂层,以及反射率曲线。 总览AGS 硫镓银晶体(silver thiogallate硫没食子酸银)是一种优质的红外非线性晶体材料,具有三波非线性作用(OPO)的优良性能。透光范围为0.53-13um, AgGaS2晶体在550um处具有高透光性,具有广泛的应用,可以用于Nd:YAG激光泵浦的OPO,半导体激光,钛宝石激光,Nd:YAG和IR染料激光的各种差频, 覆盖3-12um波段,此外,还实用于定向红外对抗系统(DIRCMS)和各种波长CO2激光倍频。AGS 硫镓银对中红外激光的倍频效率高,可用于光学参量放大和光学参量振荡以及差频产生,应用波长可达到中红外的17 µ m。AGS 硫镓银 非线性光学晶体 AgGaS2,AGS 硫镓银 非线性光学晶体 AgGaS2技术参数应用中红外辐射的高效倍频光学参量振荡和放大,不同频率产生到高达12µ m的中红外区域各向同性点附近区域的光学窄带滤波器 (0.4974 µ m at 300 K)主要参数复合物AgGaS2透明度, µ m0.47 – 13非线性参数, pm/Vd36 = 12.6 @ 10.6 µ m 负单轴晶体no ne (at λ 0.497 μm ne no)对称性四方晶系, -42m point group晶胞参数, &angst a=5.757, c=10.311典型反射指数10.6 µ m 5.3 µ mno=2.3475, ne=2.2918 no=2.3945, ne=2.3406光学损伤阈值, MW/cm2 1064 nm (t=10 ns)350离散角, °5.3 µ m0.76热导系数 k, WM/M°C1.5室温带隙, eVEg = 2.73在各向同性点的光活性 ρ = 522deg/mmn0= ne, λ = 0.4974 μm0.2透明度级别的远红外吸收边缘0.86 THz 346 µ m光学元件参数定位精度, arc min 30平行度, arc sec 30平整度546 nmλ/4表面质量, scratch/dig30/20 可提供大/长光学元件,请发送您的要求。我们能够根据客户的规格提供合适的减反射/保护等涂层,可根据要求应用反射率曲线。
    留言咨询

非线性光学响应相关的试剂

非线性光学响应相关的方案

非线性光学响应相关的论坛

  • 【求助】非线性吸收系数如何得到?

    本人的一些样品做了z-scan测试,得到一些数据和曲线,但不知道下面怎么办,对于非线性光学理论拟合等问题一窍不通,还有非线性吸收系数等都不知道如何得到?请教高手帮助我这个新手指导一下,非常感谢!

非线性光学响应相关的资料

非线性光学响应相关的资讯

  • 深紫外非线性光学晶体材料研究获进展
    深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两者之间达到一个微妙的平衡。目前,已知的深紫外非线性光学晶体几乎都是硼酸盐,基于磷酸盐的深紫外材料极为少见且非线性光学效应较弱。   在国家基金委优秀青年基金及科技部&ldquo 973&rdquo 重大研究计划等项目的支持下,中国科学院福建物质结构研究所中科院光电材料化学与物理重点实验室罗军华课题组引入较大尺寸的碱土金属和碱金属阳离子到磷酸盐中,成功构建了两个不含对称中心的新型磷酸盐化合物RbBa2(PO3)5和Rb2Ba3(P2O7)2。其中,RbBa2(PO3)5兼具深紫外磷酸盐中最短的紫外吸收边(163 nm)和最大的粉末倍频效应(1.4倍KDP),从而在这两者之间实现了很好的平衡。同时,RbBa2(PO3)5在1064 nm处相位匹配,同成分熔融,易于晶体生长,这使得RbBa2(PO3)5作为深紫外非线性光学材料具有潜在应用前景。此外,该课题组与中科院理化技术研究所林哲帅研究员合作对相关磷酸盐的光学性质作了理论计算,发现随着磷氧结构基元中[PO4]3-单元聚合程度的提高,相应磷氧结构基元的微观非线性光学系数增大 在RbBa2(PO3)5晶体结构中,[PO4]3-单元共顶点连接形成无限的一维[PO3]&infin 链,从而使RbBa2(PO3)5显示出较大的非线性光学活性,这一工作为设计具有高非线性光学活性的深紫外磷酸盐材料提供了新思路。相关研究成果发表在了《美国化学会志》(J. Am. Chem. Soc.,2014, DOI: 10.1021/ja504319x)上。   最近,该课题组在非线性光学材料探索及其倍频机制研究方面取得了一系列进展,相关成果见Nat. Comm., 2014, 5:4019DOI: 10.1038/ncomms5019 Inorg. Chem., 2014, 53, 2521 J. Mater. Chem. C, 2013, 1, 2906 RSC Adv., 2013, 3, 14000等。此前,该课题组在相关极性分子光电功能晶体材料研究方面取得了重要进展,相关成果见Adv. Mater.,2013, 25, 4159 Angew. Chem. Int. Ed., 2012, 51, 3871 Adv. Funct.Mater.,2012, 22, 4855等。   福建物构所深紫外非线性光学晶体材料研究获进展
  • 新疆理化所在新型紫外非线性光学晶体研究中取得进展
    固体紫外激光器广泛应用于商业和科学领域。非线性光学材料能够对激光器输出的特定波长的激光进行激光频率的转换和拓展,颇具应用价值。例如,利用非线性光学材料进行的Nd:YAG激光辐射的四次谐波产生是输出266 nm紫外激光的有效方式。合成紫外非线性光学材料需要满足苛刻的性能要求,因而在材料设计中存在挑战。 既往研究提出了氟导向材料设计策略,以在硼酸盐体系中探索具有优异性能的双折射和非线性光学材料。向硼酸盐中引入氟可以有效地丰富结构化学和调控光学性能。LiB3O5(LBO)晶体是重要的非线性光学材料,并得到广泛应用,但遗憾的是其小的双折射导致LBO晶体无法实现1064 nm激光的直接四倍频输出。是否可以通过调整晶体结构来增大LBO的双折射,从而达到更短的相位匹配波长?   近期,中国科学院新疆理化技术研究所晶体材料研究中心通过化学合成制备得到氟硼酸盐晶体LiNaB6O9F2。LiNaB6O9F2具有由[B6O11F2]基本构建模块组成的二互穿3[B6O9F2]∞三维网络,这是首次在氟硼酸盐体系中观察到。LiNaB6O9F2在深紫外截止边,大的倍频响应(1.1 × KDP),合适的双折射(0.067@1064 nm)之间实现了更好的平衡。随着氟的引入,LiNaB6O9F2展示出氟导向性能优化,包括比LBO更大的双折射(0.067@1064 nm之于LBO的0.040@1064 nm),比LBO更短的相位匹配波长(210 nm之于LBO的277 nm)。该工作丰富了氟硼酸盐的结构化学,证明了氟导向策略是探索具有优良光学性能的非线性光学晶体的可行方法。   相关研究成果以全文Research Article形式,发表在Advanced Optical Materials上。研究工作得到国家自然科学基金和中科院等的支持。
  • 二维磁性材料非线性光学研究取得重要进展
    p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 据悉,近年来,二维磁性材料在国际上成为备受关注的研究热点。它们能将自发磁化保持到单原胞层厚度,为人们理解和调控低维磁性提供了新的研究平台,也为二维磁性与自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面有着重要应用价值。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 尽管二维磁性材料的铁磁性质已有研究,但反铁磁态由于不具有宏观磁化,材料体系整体对外不表现出磁性,加之样品既薄又小,其实验研究是领域内的一大难题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 针对这一问题,近日,复旦大学物理系吴施伟课题组与华盛顿大学许晓栋课题组合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。北京时间8月1日凌晨,相关研究成果以《反铁磁双层三碘化铬中巨大的非互易二次谐波产生》(“Giant nonreciprocal second harmonic generation from antiferromagnetic bilayer CrI3”)为题发表于《自然》(Nature)杂志。 /span /p p style=" text-align: center text-indent: 2em " span style=" font-family: & quot times new roman& quot " img style=" max-width: 100% max-height: 100% width: 400px height: 273px " src=" https://img1.17img.cn/17img/images/201908/uepic/4ab2a45d-ae2c-44ff-a0d7-2d4959a3a9a0.jpg" title=" caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" alt=" caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" width=" 400" height=" 273" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: & quot times new roman& quot font-size: 14px " 双层三碘化铬 图片来自复旦大学物理系网站 /span /p p style=" text-align: justify " strong span style=" font-family: & quot times new roman& quot " 将经典方法引入新领域 开辟广阔研究空间 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究工作中观测到的由层间反铁磁诱导的二次谐波响应让团队成员们非常兴奋,因为他们知道,这在二维材料的研究和非线性光学领域都具有重要的意义。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " “意义首先在于其独特性。”吴施伟介绍,迄今为止二维材料领域所研究的二次谐波大多由晶格结构的对称破缺引起。“对称破缺也就是破坏对称性,例如人的左右手原本是镜面对称的,如果一只手指受伤,那么镜面对称就破缺了。”而这种由磁结构产生的非互易二次谐波和前者有本质区别,从原理上就十分新颖。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 反铁磁材料由于没有宏观的磁矩,对外部的物理激励一般难以产生宏观的可测量的响应,对仅有几个原子层厚的二维反铁磁材料往往无能为力。“过去这个问题就像是灯光照不到的地方,一片黑暗无从下手。然而就是这样的一种‘暗’状态,现在能通过二次谐波的方式变‘亮’。这也是将一种经典的方法引入一个新领域的美妙所在。”吴施伟对此颇有感触。这种二次谐波过程对材料磁结构的对称性高度敏感,为二维磁性材料的研究开辟了广阔的研究空间。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究团队同时发现,双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量级的提升,比常规铁磁界面产生的二次谐波更是高出十个数量级。利用这一强烈的二次谐波信号,团队得以揭示双层三碘化铬的原胞层堆叠结构的对称性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 吴施伟介绍,体材三碘化铬在高温下属于单斜(monoclinic)晶系,在低温下发生结构相变而变为菱形(rhombohedral)晶系,两者的差别在于范德瓦尔斯作用(一种原子或分子之间的相互作用力,相比于化学键的相互作用,范德瓦尔斯相互作用弱得多)的层间平移。但在寡层极限下,低温下的晶格堆叠结构还存在着争议。团队在实验中使用一束偏振光测量了材料在空间不同方向的极化,通过测量偏振极化的二次谐波信号,发现它与单斜晶格的堆叠结构都具备镜面对称性,这与国际上新近发表的理论计算结果一致,为研究二维材料层间堆叠结构与层间铁磁、反铁磁耦合的关联提供了新的实验证据和研究手段。 /span /p p style=" text-align: justify " strong span style=" font-family: & quot times new roman& quot " 创新研发实验系统 实现基础研究突破 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 研究团队在实验中探测的反铁磁材料仅有两个原胞层厚度(厚度在2nm以下),而在此条件下,中子散射等测量手段很难奏效。针对这一问题,团队基于过去多年在二维材料非线性光学研究领域的积累,运用了光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 光学二次谐波过程对体系的对称性高度敏感,光学二次谐波的探测方法从体系的对称性入手,能够灵敏地探测体系的反铁磁性。与通常探测磁性的实验手段不同,它不依赖于材料的宏观磁性,而取决于微观磁结构造成的对称破缺。双层三碘化铬在反铁磁态下,其磁结构不但打破了时间反演对称性,也同时打破了空间反演对称性,由此产生强烈的非互易二次谐波响应。当体系升至转变温度以上、或施加面外磁场拉为铁磁态后,磁结构的对称性却发生了改变,这一二次谐波信号也随之消失。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 自2017年至今,两年的协力共进浇灌出如今的成果。团队首先利用实验室已有的无液氦可变温显微光学扫描成像系统进行了初步测量,但由于该系统没有磁场,很多关键的实验测量受到了限制。为解决这一问题,课题组成员攻坚克难,利用一套无液氦室温孔超导磁体,自主研发搭建了一套无液氦可变温强磁场显微光学扫描成像系统,并借助新系统实现强磁场下的光学测量,完成了关键数据的探测。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 据了解,该研究工作的合作团队还包括香港大学教授姚望、卡耐基梅隆大学教授肖笛、华盛顿大学教授曹霆、美国橡树岭国家实验室研究员Michael McGuire,以及我系教授刘韡韬、陈张海、高春雷等。吴施伟和许晓栋为文章的通讯作者,我系博士研究生孙泽元和易扬帆为共同第一作者。研究工作得到自然科学基金委、科技部重大研究计划和重点研发专项计划等项目经费的支持。 /span /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制